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Abstract

Selecting a subset out of many potential explanatory variables in linear regressions
has long been the subject of research interest, and the matter becomes critical in the
machine-learning era when models are preferably constructed by identifying critical
features among fast-increasing variables gathered through digital footprints. In the lit-
erature, the l1-norm penalty on the regression coefficients such as Lasso of Tibshirani
(1996) have become very popular. However, the variable selection problem in its natu-
ral setting is a zero-norm penalty problem, i.e., a penalty on the number of variables as
opposed to the l1-norm of model coefficients. But selection with the zero-norm penalty
is a highly demanding combinatory optimization task. Here we devise a sequential
Monte Carlo optimization method for zero-norm variable selection that is practical
(tasks typically completed under 10 minutes on a multi-core desktop computer) and
reliable (assessable quality by the extreme-value theory-based inference). We demon-
strate through a simulation study the method’s reliability and superiority vis-a-vis the
adaptive Lasso.

*Duan is with Criat, ADBIZA and the National University of Singapore and holds an adjunct profes-
sorship at National Chengchi University. E-mail: bizdjc@nus.edu.sg. The author thanks Yu-Hung Chien,
Shuping Li, Kaican Kang and Qiqi Zou for their able research assistance.

(Note: The earlier version of this paper was entitled ”Variable Selection with Big Data based on
Zero Norm and via Sequential Monte Carlo,” 2019.)
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1 Introduction

Selecting a suitable subset of regressors in the context of linear regressions or other similarly
structured variable selection problems plays a critical role for a wide range of practical issues
when facing big data. Its importance is completely obvious so that we will skip the vast
literature along many lines of research. Variable selection based on the zero-norm penalty
(i.e., number of selected regressors) is conceptually more appealing than other criteria such as
the l1-norm penalty because it directly addresses the variable selection problem. Practically
speaking, it also works better because regression coefficients are not distorted by the penalty
term (i.e., shrinkage toward zero when being selected). Also interesting to note is the fact
that the regression model fit, measured in R2, is in invariant to linearly transforming a
group of regressors, but the corresponding lp (0 < p < 2) penalty term is not.1 Therefore,
multicolinearity which naturally occurs in data will interfere with regressor selection based
on an lp (0 < p < 2) penalty, but not with the zero-norm regressor selection. In this paper,
we propose a practical sequential Monte Carlo solution to the zero-norm regressor selection
problem, and demonstrate through a simulation study the distortion caused by Lasso.

The main idea of our zero-norm regressor selection method is to cast this variable selection
problem as a pure combinatory optimization problem that is solvable with sequential Monte
Carlo optimization (see Duan, et al (2022)). The main engine is the density-tempered
sequential Monte Carlo (SMC) sampling technique by Del Moral, et al (2006), Duan and
Fulop (2015), among others. Once a random combination of a fixed number of regressors
is given, we rely on the closed-form linear regression solution to attach to the combination
a likelihood of occurrence, which in turn defines a probability distribution function, up to
a missing norming constant, over all possible combinations of the same fixed number of
variables. By sequential probability-tempering, one will arrive at a final SMC sample of,
say, 1,000 SMC particles, to mimick this target probability function whose maximum in turn
provides the best combination. Our variable selection method is by nature of sampling from
the entire distribution a global solution approach.

Our SMC sampling technique originates from the Bayesian literature, but our approach
differs from a long line of research papers using the Bayesian statistical techniques. Typical
approaches rely on a hierarchical structure whether any given regression coefficient is mod-
eled by a spike-and-slab (i.e., Bernoulli and Gaussian) mixture and its variants, for example,
Mitchell and Beauchamp (1988), George and McCulloch (1993) and Polson and Sun (2018),
or adaptive sampling for variables’ inclusion via some parametric distribution for binary vari-
ables as in Schafer and Chopin (2013). In a true Bayesian sense, these algorithms typically

1lp for 0 ≤ p < 1 is actually not a norm, and zero-norm so-named by David Donoho, a special case of
p = 0, obviously lacks homogeneity. However, zero-norm has become a standard way of describing such a
penalty form in the data analytics community.
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require a strong prior and some further distribution assumptions to work, and essentially al-
ters the original variable selection problem. In contrast, our SMC variable selection method
does not make any additional distributional assumption and solves the combinatory problem
in its original form. Practically important is our method’s ability to scale up for real big-data
problems for which the number of potential regressors may run into hundreds of thousands.

We first show that selecting regressors subject to a zero-norm condition is equivalent
to finding the maximum value of a distribution function defined over combinations of re-
gressors at some fixed number of elements, say, k. Our target distribution function has no
tractable analytical solution, but can be represented by a sample of k-dimensional points
with each representing a k-combination out of all potential regressors. Since different orders
of regressors for a given combination yields the same regression solution, permutation has no
particular meaning above and beyond reducing to a combination. However, a distribution
function defined over permutations are easier to sample and the distribution function defined
over permutations can be proportionally scaled up to obtain the target distribution function
defined over combinations.

Note that the SMC algorithm used in solving this maximization problem is by design free
of any scaling constant. Hence, the SMC sample representing the distribution function over
combinations is exactly the same as the one over permutations after collapsing permutations
into combinations. On the methodological front, we devise a sensible but arbitrary initial-
ization sampler to generate permutations and absorb its initialization distribution into the
importance weight. Then, the progression of the algorithm is performed repeatedly through
reweighting, resampling, and support-boosting steps to finally arrive at the SMC sample for
the target distribution. For the Metropolis-Hastings move used in the support-boosting step,
we also engage a proposal sampler defined over permutations for the same reason.

With a typical multi-core desktop computer, one can complete the fixed-number selection
task (for example, choosing 12 variables out of 900) in about one minute. When the number
of variables needs to be determined, the overall selection task (determining the right number
and the optimal variable combination) can also be completed in under 10 minutes.

We conduct a comprehensive simulation study of selecting 9 or 18 variables out of 900
potential variables, and under which the number of potential combinations equals 1.026×1021

and 1.986 × 1037, respectively. In the 500 simulation repetitions, the selected model under
each scenario typically has a higher in-sample R2 than that of the estimated true model,
suggesting that the zero-norm SMC method has likely selected the best variable combination
in a practical sense. The SMC method’s performance improves when the observations are
smaller and/or the residual errors are larger because sampling errors become larger and
making room for the selected model to outperform the true model based on the in-sample
R2. Naturally, it also performs better when the number of selected variables is smaller,
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i.e., 9 versus 18 because the zero-norm SMC method is less likely to miss the best in-
sample solution. Finally, we ascertain the SMC method’s capability to find the maximum
by comparing the solution to a proxy grand maximum generated as the maximum over 500
randomly seeded SMC optimization runs on the same data sample.

We conduct another simulation study to check the relative performance of the zero-norm
SMC method versus the Adaptive Lasso of Zou (2006). In this simulation study, the true
model has 12 variables and the selection task is to choose the best combination among 900
potential variables with 200 observations while the number of variables is unknown to the
analyst. Five-fold cross-validation is deployed to determine the number of variables in the
final solution for both the zero-norm SMC method and the adaptive Lasso. We complete
500 simulation runs to document their performances. The results clearly indicate that the
adaptive Lasso is prone to picking too many variables with an average of 53 variables when
the true model has 12 by design, and the range is quite wide with the solutions from 13
to 142. In contrast, the zero-norm SMC method yields an average of 11 variables with the
range from 7 to 14. The F-scores, a standard way of comparing models in machine learning,
also suggest a far superior performance in favor of the zero-norm SMC method.

The zero-SMC algorithm can in theory find the right solution with a probability of one
when the number of particles increases to infinity. Other than a theoretical interest, that
would be no better than the brute-force approach of exhausting all possible combinations.
Similar to using the Central Limit Theorem to assess the Monte Carlo solutions in many
contexts, our SMC solution’s R2 is the maximum order statistic of the final SMC sample and
can thus be appraised with an estimated Weibull distribution, a max-stable distribution limit
implied by the Fisher-Tippett-Gnedenko Extreme Value Theorem. We show by simulation
that the predictive R2 distribution can help assess whether more SMC particles are needed
to increase the solution’s precision.

2 Linear regression subject to a zero-norm penalty

Consider the classical linear regression model of p regressors with n observations:

y = Xβ + ε (1)

where y = (y1, · · · , yn)′, and X denotes the n observations of p regressors, i.e., X =
(x1, · · · ,xp) with xi = (x1, · · · , xn)′, of which the first vector may represent the intercept
term. β = (β1, · · · , βp)′ is the p-dimensional regression coefficients, and ε is n-dimensional
i.i.d. normally distributed errors with mean 0 and variance σ2.

Sometimes, there are more potential regressors than data; that is, p is greater than n.
Penalized regression is the only sensible way to estimate this regression. Even if there are
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enough data points, in-sample over-fitting is still a general modeling concern and penalized
regression can be very useful in dealing with the over-fitting problem. Multicollinearity
is another commonly encountered situation in regressions, meaning that some of them are
highly correlated. Trimming away some regressors seems to be a wise thing to do, and
penalized regression is an obvious way to go. Whatever is the reason, the general issue boils
down to selecting a subset of good regressors that delivers a robust and reliable performance.

The penalized regression considered in this paper is the one subject to the zero-norm
regularization.

arg minβ ||y −Xβ||2l2 (2)

s.t. ||β||l0 ≤ ps ≤ p

where || · ||l2 and || · ||l0 stands for the l2 and zero norms, respectively. Note that ||β||l0
counts the number of non-zero entries in β. Note that the above minimization problem is
equivalent to arg minβ

{
||y −Xβ||2l2 + λ||β||l0

}
where the solution is a step function of λ

with the jumps corresponding to different values of k. This zero-norm penalized regression
problem, albeit being natural for regressor selection, is known by Natarajan (1995) to be
NP-hard. Thus, the Lasso technique of Tibshirani (1996) (i.e., replacing λ||β||l0 by λ||β||l1)
has become extremely popular, because the minimization problem is convex and there is an
efficient algorithm to find the unique global solution. However, the Lasso technique does not
possess the oracle properties as defined by Fan and Li (2001). Alternatives to the Lasso and
with the oracle properties are also popular, for example, the SCAD method of Fan (1997)and
Fan and Li (2001) and adaptive Lasso of Zou (2006).

The “Irrepresentable Condition” of Zhao and Yu (2006) is an important factor in applying
Lasso and its variants. The condition states that “Lasso selects the true model consistently
if and (almost) only if the predictors that are not in the true model are ‘irrepresentable’ by
predictors that are in the true model.” What it means in practice is that multicollinear-
ity can create problems in applying Lasso or its variants. Many real problems come with
many closely related variables. Individually, they offer meaningful explanatory powers, but
including them all does not make sense nor actually improves the model’s performance after
factoring in sampling errors. The practical issue is to find one or two of them work the best
along with other variables of interest. Multicolinearity among these variables can be concep-
tually viewed as a natural result of linearly transforming a set of independent variables. Note
that a regression model fit, measured in R2, is in invariant to such a linear transformation
of regressors, but the corresponding l1 penalty term is not. Such a natural set of competing
variables may incur a high l1 penalty without measurably increasing the R2, which then
leads to their total elimination from the selected model. In short, multicolinearity interferes
with regressor selection, and the Lasso or its variants may lead to the entire set of closely
related variables not being selected instead of intuitively keeping one variable or two in the
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final model. This observation is not purely theoretical because it often occurs in practice.
We will demonstrate this later with a simulation study.

In the next section, we devise a SMC-based combinatorial optimization solution that is
stable and runs efficiently. Theoretically, this stochastic solution can be made arbitrarily
close to the true solution through the argument of the maximum order statistic. By nature,
our SMC approach is a global optimization technique because it samples from the entire
distribution defined by the optimization objective function.

3 The distribution-tempered SMC solution

Our approach relies on reformulating the zero-norm constrained variable selection problem
in (2) into an equivalent maximization problem over a distribution function defined on a
ps-dimensional random vector, U = (U1, U2, · · · , Ups), that takes values from the set of the
regressor sequence numbers P = {1, 2, · · · , p} without replacement and its distribution is
unknown. Naturally, ps < n is understood. If otherwise, the regression model based on
any combination of ps regressors would, generally speaking, produce a perfect fit. We will
leave the task of identifying its distribution function for a later discussion. For now, the
focus is on setting up this equivalent reformulation. Without loss of generality, first note
that the inequality constraint in (2) can be turned into an equality, because the solution will
obviously be at the boundary. Thus, the minimization problem in (2) is equivalent to:

arg max{U∈P (ps)} exp
{
−λ||y −XU β̂(U)||2l2

}
(3)

where P (ps) denotes {U ∈ P ps&U1 6= U2 6= · · · 6= Ups}, P ps stands for the ps-Cartesian
product of P , XU denotes the sub-matrix of X whose columns correspond to the regressor
sequence numbers in U , and β̂(U) = (X ′UXU )−1X ′Uy is the optimal regression β when U
is known. Finally, λ is a positive self-adaptive tuning device for numerical accuracy which
tunes the totally discrete target function.

Since exp
{
−λ||y −XU β̂(U)||2l2

}
is positive, it can obviously be viewed as a discrete dis-

tribution function of U , up to a norming constant, over P (ps), i.e, the set of permutations.
Since the order of regressors for a given combination yields the same regression solution, the
distribution defined over permutations is a proportionally scaled down version of the distri-
bution function defined over combinations where the scaling factor is ps!. Since permutations
are easier to generate, we will target the distribution function over permutations where the
SMC algorithm is by design free of any proportional constant.

Instead of having the pure in-sample target as in (3), we choose to conduct the follow-
ing optimization built upon a cross-validated target function and refer to it as the Stable
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Combinatorially-Optimized Features Selector (SCOFS):

arg max{pl≤ps≤pu,U∈P (ps)} exp

{
−λ

k∑
j=1

||yj −XU ,jβ̂j−(U)||2l2

}
(4)

where β̂j−(U) is the optimal beta corresponding to the (U ) with the jth data subset excluded,
and pl and pu define the permissible range for the number of regressors.

The solution for the optimal number of regressors has a natural tendency moving towards
pu because of a better fit even for the cross-validated target function. Insignificant β’s in
β̂(U) evaluated at the optimally-selected U may occur unless we prevent the model to have
any insignificant regression coefficient. The following scheme addresses over-fitting.

1. For the optimally-selected ps model, check to see whether there is any insignificant
variable with an α-level t-test. If so, reduce ps by 1, find the optimally-selected ps − 1
model and check for insignificant regression coefficients again.

2. If the optimally-selected ps model has no insignificant variable, find the optimally-
selected ps + 1 model and check for any insignificance again.

Therefore, our target discrete distribution function for sampling at a fixed ps is

f(U ∈ P (ps);y,X) ∝ exp

{
−λ

k∑
j=1

||yj −XU ,jβ̂j−(U)||2l2

}
. (5)

The task of selecting regressors has now been converted into finding the maximum of the
above distribution function.

The basic idea of finding the maximum of (5) is to generate a sample suitably repre-
senting this distribution function. Our distribution-tempered SMC approach to finding this
maximum has its root in Del Moral, et al (2006) and Duan and Fulop (2015). Our ap-
proach resembles more that of Duan and Zhang (2016), which devises a way to effectively
generate a high-dimensional random object subject to some condition. Generating a sam-
ple of non-Gaussian bridge paths is the target in Duan and Zhang (2016), whereas in this
paper, the task is to find the maximum value of f(U ∈ P (ps);y,X) through sequentially
generating (ps,U ) by tempering distribution to arrive at a sample that properly represents
f(U ∈ P (ps);y,X). Thus, its maximal value and corresponding maximizer, up to a Monte
Carlo error, becomes readily available.
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3.1 The algorithm

Our distribution-tempered SMC method can be divided into three key steps – (1) initializa-
tion, (2) reweighting and resampling, and (3) support boosting.

Initialization

Assign each regressor with an initial probability q̄i for i ∈ P . An intuitive and quick
way is to set q̄i = R2

i /
∑p

j=1R
2
j where R2

i is the regression R2 using a single Variable i. Let

q
(ps)
i (0) = q̄i for all i’s, and use q

(ps)
i (0) to sample U from P , i.e., simulate ps regressors

without replacement from the pool of p regressors. Since we need to obtain exactly ps
regressors, sampling can be performed sequentially by choosing the first regressor out of the
p potential regressors with the probability of q

(ps)
i (0) for i ∈ P . Then, move on to selecting

the second one out of the remaining p− 1 regressors. Assuming that the first one is Variable

i, the probability for choosing Variable j as the second becomes
q
(ps)
j (0)

1−q(ps)i (0)
for j ∈ P \ {i}.

The same logic applies to the third regressor and so on until reaching the last one in the
permutation, i.e., ps, for which the probability is q

(ps)
k (0) for sampling Variable k from the

remainder. If q
(ps)
i (0) = 0 for some Variable i, it will never be sampled and can thus be

trimmed from the set of regressors from the start. Thus, P should be understood as the set
of regressors with q

(ps)
i (0) > 0. Use I(U ∈ P (ps); q

(ps)
i (0), i ∈ P ) to denote this permutation

sampler based on the distribution q
(ps)
i (0).

Note that this sampler’s probability distribution, being a product of the probabilities
just mentioned, depends on the specific sequence of appearance. In other words, the sam-
pled points represent different permutations, which are easier to sample and evaluate their
probabilities. The regression solution, however, only depends on the combination, and
hence different permutations yielding the same combination will share the same value of

exp
{
−λ
∑k

j=1 ||yj −XU ,jβ̂j−(U)||2l2
}

. Thus, the maximum is not unique over U ∈ P (ps),

but it does not matter to the solution.

Reweighting and resampling

Define an intermediate target distribution function as

fγ(U ∈ P (ps);y,X) ∝

exp
{
−λ
∑k

j=1 ||yj −XU ,jβ̂j−(U)||2l2
}

I(U ∈ P (ps); q
(ps)
i (0), i ∈ P )

γ

×I(U ∈ P (ps); q
(ps)
i (0), i ∈ P ) (6)

Obviously, fγ(U ∈ P (ps);y,X) equals I(U ∈ P (ps); q
(ps)
i (0), i ∈ P ) when γ = 0, and

f(U ∈ P (ps);y,X) when γ = 1.
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The distribution-tempered SMC technique moves the sample along a self-adapted control
bridge by advancing γ from 0 to 1. The self-adapted control rests with choosing γ so that the
effective sample size (ESS) implied by the importance weight does not fall below a threshold
ηM where M is the intended size of the SMC sample and η equals, say, 1/2. Denote the

incremental importance weight by wγ,γ(j)(U
(i)) =

(
exp{−λ∑k

j=1 ||yj−XU,j β̂j−(U)||2l2}
I(U (i)∈P (ps);q

(ps)
i (0),i∈P )

)γ−γ(j)
and

ESS =

(∑M
i=1 wγ,γ(j) (U

(i))
)2

∑M
i=1

(
w
γ,γ(j)

(U (i))
)2 .

Set γ(0) = 0. Find γ∗ such that the ESS is no less than ηM . Note that this solution need
not be exactly at ηM , because it is just a control device to prevent the quality of sample
from deteriorating too much. Use the incremental importance weight to resample in order
to obtain an equally-weighted sample of U . Then, set γ(1) = γ∗.

Support boosting

After resampling, the sample is likely to contain more duplicate copies of some U ’s to
reflect their relatively high importance weights, which means that empirical support has
shrunk.2 We need to boost the empirical support before advancing γ again. Support boost-
ing can be accomplished by several Metropolis-Hastings (MH) moves until the cumulative
realized acceptance rate has reached a target level, say, 100%, which is to ensure that the
empirical support has been properly boosted.3

The SMC sample provides a natural basis for coming up with a good proposal for execut-
ing MH moves. Compute c

(ps)
i (γ) =

∑M
j=1

∑ps
l=1 χ{U(j)

l =i}, which is the total count of Variable

i appearing in the sample of size M . Define a probability by q
(ps)
i (γ) = c

(ps)
i (γ)/

∑p
j=1 c

(ps)
j (γ)

for i = 1, 2 · · · , p, which reflects the relative importance of Variable i after the SMC algo-
rithm has reached the stage indicated by γ. If ps regressors attain a probability of 1/ps,
the sampler based on these probabilities will always generate different permutations of the
same ps regressors. We use QU (γ) to represent these probabilities inferred from the sample.
Instead of proposing a new permutation hoping to improve the solution, a more efficient and

2It is worth noting that duplicates can be expected under a discrete distribution even for an ideal sample.
Duplicates merely reflect the number of elements in the theoretical support versus the sample size. Support-
boosting is meant to remove duplicates due to resampling, but it is impossible to get rid of duplicates inherent
to a discrete distribution.

3Since the underlying distribution is discrete, complete distinctiveness of particles cannot be expected.
To ensure that proper support boosting has been completed, one can attach to each particle a uniform
random number whenever a proposal is made. Resampling destroys particle distinctiveness, but accepting
new proposal has in effect restored distinctiveness which is revealed in the distinctiveness of these attached
uniform random numbers.
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realistic approach is to replace a randomly selected subset of the existing permutation when
ps is large. Importantly, this differs from the single best replacement algorithm of Soussen,
et al (2015).

Denote by h(U ∗ ∈ P (ps) | U ∗−Ã = U−Ã;QU (γ)) the conditional distribution based on

QU (γ) for proposing regressors to replace Ã, a random subject of elements in permutation
U , where U−Ã stands for removing from U those elements in Ã. Given Ã, this probability
is the standard permutation result for proposing element i ∈ P \ U−Ã. Coupling with the

probability of sampling Ã gives rise to the overall proposal probability.

One may be tempted to propose a replacement subset in a way just like the initialization
step. However, if for some random chance the current M ps-variable combinations had
completely missed the variables in the optimal solution, the support boosting step would
forever miss the optimal choice. A more reliable way of proposing new regressor permutations
is therefore to mix h(U ∗ ∈ P (ps) | U ∗−Ã = U−Ã;QU (γ)) with I(U ∗ ∈ P (ps) | U ∗−Ã =

U−Ã; q̄i, i ∈ P ), the initialization sampler applying to i ∈ P \U−Ã. Specifically, our proposal
sampler is based on h(ω)(U ∗ ∈ P (ps) | U ∗−Ã = U−Ã;QU (γ)) = ωh(U ∗ ∈ P (ps) | U ∗−Ã =

U−Ã;QU (γ)) + (1− ω)I(U ∗ ∈ P (ps) | U ∗−Ã = U−Ã; q̄i, i ∈ P ), where ω is set to 50% in our
implementation.

The MH acceptance probability for replacing Ã, a random subset of elements in permu-
tation U , is

α(j)
γ {U ∈ P (ps)⇒ U ∗ ∈ P (ps)}

= min

{
1,
fγ(U

∗ ∈ P (ps);y,X)

fγ(U ∈ P (ps);y,X)

h(ω)(U ∈ P (ps) | U ∗−Ã = U−Ã;QU (γ))

h(ω)(U ∗ ∈ P (ps) | U ∗−Ã = U−Ã;QU (γ))

}

= min

1,
exp

{
−γλ

∑k
j=1 ||yj −XU∗,jβ̂j−(U ∗)||2l2

}
exp

{
−γλ

∑k
j=1 ||yj −XU ,jβ̂j−(U)||2l2

} (
I(U ∗ ∈ P (ps); q̄i, i ∈ P )

I(U ∈ P (ps); q̄i, i ∈ P )

)1−γ

×
h(ω)(U ∈ P (ps) | U ∗−Ã = U−Ã;QU (γ))

h(ω)(U ∗ ∈ P (ps) | U ∗−Ã = U−Ã;QU (γ))

}
(7)

The acceptance probability defines a Markov kernel, and the target intermediate distribution
in (6) is, by the standard argument, the stationary solution to the Markov kernel. In one
round of support boosting, the MH move may replace a random number of elements to
increase combination diversity. An average acceptance rate can be computed for a particular
round. The support boosting step is considered satisfactorily completed when the cumulative
average acceptance rate over rounds has reached the target level, and for which we set it at
500%.
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After the empirical support is properly boosted, the system is ready for advancement from
γ(1) to γ(2), and eventually to 1. This is conducted by repeating the reweighting, resampling
and support boosting steps. Finally, the tuning parameter λ can be adapted adjusted so
that the optimal solution in the final SMC sample reaches an empirical probability between,
say, 10% to 20%. This tuning ensures that the final SMC sample is not degenerate due to
over-concentration in a few particles and also distinguishes the optimal solution distinguishes
from others.

3.2 k-fold duplication to enlarge the SMC sample

When the number of chosen regressors, ps ≤ p, is large, the size of the SMC sample, M , may
need to be large enough to properly represent the underlying distribution over the discrete
and yet very large set, P (ps). In fact, if M is made arbitrarily large, the SMC solution will be
arbitrarily close to the true solution in probability, or may even be the true solution simply
because the underlying distribution is discrete with a large but finite number of combinations.
Efficiently increasing the SMC sample size will thus make the method practically powerful.
Duan and Zhang’ (2016) k-fold duplication technique serves this purpose well.

k-fold duplication is to duplicate the sample of size M to kM by making additional
(k − 1) identical copies of the SMC sample of size M . One then relies on support-boosting
to reduce duplicates (i.e., enlarge the empirical support) to turn the sample into a truly
representative sample of size kM . The key to k-fold duplication vis-a-vis straightforward
SMC with a sample of size kM is to directly leverage the final SMC sample of size M at the
stage of γ = 1 so as to bypass the intermediate steps required for the distribution-tempering
bridge for (k − 1)M sample points.

3.3 Assessing the quality of solution

Like all Monte Carlo algorithms, SCOFS is a stochastic scheme that will in principle select
the optimal ps and ps-variable combination out of the potential variables that delivers the
maximum R2 if the SMC sample size, M , approaches infinity. Practically speaking, however,
one would need a means to assess how close the final solution’s R2 is to the true maximum
under some finite M . In typical Monte Carlo analyses, the Central Limit Theorem serves
as the basis for an assessment. In our context, the Fisher-Tippett-Gnedenko Extreme Value
Theorem provides the theoretical foundation.

Let R̄2(ps) be the regression R2 at our final selected set of ps variables. It is important
to note that R̄2(ps) may be strictly larger than R2(ps;M) = max {R2

i (ps); i = 1, 2, · · · ,M},
the set of R2 corresponding to different ps-variable combinations in the final SMC sample of
size M , because R̄2(ps) is the best result recorded throughout the whole sequential updating
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process. Denote by R2
max(ps) the theoretical true maximum R2 after exhausting all possible

combinations of ps variables, and naturally, R2(ps;M) ≤ R̄2(ps) ≤ R2
max(ps). Our tasks are

(1) to estimate R2
max(ps) so as to know the potential room for improvement by increasing

the SMC sample size, and (2) to estimate the exceedance probability, i.e., the probability of
exceeding R̄2(ps).

R2(ps) can be viewed as a random variable resulting from random ps-variable com-
binations. Although its distribution function, denoted by G(·), is an unknown discrete
distribution, R2 is obviously bounded above by its theoretical maximum at R2

max(ps) ≤
1. In the neighborhood of R2

max(ps), one can show that G(x) can be approximated by

(R2
max(ps)− x)

α
L
(

1
R2
max(ps)−x

)
where L(·) is a slowly varying function converging to zero at

infinity and α some unknown positive constant, because G(x) is fundamentally a discrete
distribution. Thus, the Fisher-Tippett-Gnedenko Extreme Value Theorem implies conver-
gence to a Weibull distribution with the shape parameter α and scale parameter 1; that is,
for large M ′ < M

Prob

{
R2(ps,M

′)−R2
max(ps)

R2
max(ps)−G←(1− 1/M ′)

≤ x

}
∼= exp (−|x|α) for x ≤ 0 (8)

where G←(x) ≡ inf{y : G(y) > x}, i.e., the left continuous inverse. Consequently, R2(ps;M
′)

has an approximate distribution function:

FR2(ps,M ′)(z) = exp

[
−
(
R2
max(ps)− z

η

)α]
for z ≤ R2

max(ps) (9)

where η = R2
max(ps)−G←(1− 1/M ′).

The Weibull distribution in (9) can be treated as a two- or three-parameter distribution
function. Taking R2

max(ps), α and η as unknown, the system has three parameters. If instead
we view G←(1 − 1/M ′) as known by its empirical distribution derived from the final SMC
sample, then the system only has two unknown parameters, i.e., R2

max(ps) and α. We will
estimate the unknown parameters using {R2

i (ps); i = 1, 2, · · · ,M} by randomly partitioning
the SMC sample into k subsamples of size M ′; for example, the SMC sample of size 5,000 is
partitioned into 50 subsamples of 100 each. We then use these k subsample maximum R2,
i.e., R2(ps;M

′) to find optimal values for R2
max(ps) (≤ 1 and ≥ R̄2(ps)), α > 0 and η > 0 (if

η is treated as a free parameter) by matching closely the k-point empirical distribution to
the extreme value distribution by minimizing the l2 distance.4

4Note that some of these k subsample maxima may share common values. In which case, the l2 distance
will be computed over fewer than k points. If the number of unique R2 values equals one, this degenerate
case cannot be estimated and the true maximum R2 is considered already attained by R̄2(ps). When the
number of unique R2 is two, we use the two-parameter distribution function whereas for cases with three or
more unique R2 values, we always deploy the three-parameter distribution in estimation. One may want to
use the tuning parameter λ to adjust the SMC sample diversity to yield more distinct block-maximum R2’s.

12



Figure 1 displays a predicted Weibull distribution for R2 taken from a simulation study to
be described in the next section. It is estimated to a 47-point empirical distribution deriving
from 50 block-maximum R2’s with a block size of 100 randomly selected SMC particles that
are obtained with SCOFS using 5,000 SMC particles. The data sample is generated with
a model of 12 variables at a theoretical R2 of 80%, and the selection task is to choose 12
among 900 potential variables. In this figure, R2

max = 0.8541 provides an estimate for how
high the R2 can be potentially increased to from its current value of 0.8501, by increasing
the number of SMC particles. We produce a proxy grand maximum R2 for benchmarking,
which is the maximum R2 over 500 randomly seeded SMC optimization runs on the same
data sample. Note that the estimated maximum R2 (i.e., 0.8541) displayed on the graph
only slightly overstates the possibility of exceeding the grand maximum R2 (i.e., 0.8526).

Figure 1: An example of the extreme value theory predicted R2 distribution function

4 Simulation studies

To ascertain the reliability of SCOFS, we conduct a simulation study and report the results in
Table 1. All SCOFS runs in this simulation study use 1,000 SMC particles. This simulation
study intends to address the question as to whether the best combination of explanatory
variables can be found. Since the combinatory possibilities cannot be practically exhausted,
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Table 1: A simulation study deploys Stable Combinatorially-optimized Feature Selector
(SCOFS) with 1,000 SMC particles to select out of 900 potential variables: the selected
model vs. the estimated true model over 500 simulated samples. The 900 variables, which
are normal random variables of mean 0 and variance 1, are divided into three independent
groups of 300 each and at three levels of within-group correlation – 0, 0.4, and 0.8. The
magnitude of regression coefficient varies from low to high and the theoretical R2 of the
simulated model is at 40% or 80%.

# of obs=200, # of var=9, and R2=80% # of obs=200, # of var=9, and R2=40%

R2 of the selected model is strictly greater: 100% R2 of the selected model is strictly greater: 100%

Hit Ratio Within-group correlation Hit Ratio Within-group correlation

Coefficient 0 0.4 0.8 Coefficient 0 0.4 0.8

0.1 0.04 0.02 0.014 0.1 0.024 0.01 0.014

0.5 0.952 0.934 0.4 0.5 0.292 0.156 0.05

1.0 0.992 0.992 0.98 1.0 0.918 0.74 0.256

# of obs=200, # of var=18, and R2=80% # of obs=200, # of var=18, and R2=40%

R2 of the selected model is strictly greater: 100% R2 of the selected model is strictly greater: 100%

Hit Ratio Within-group correlation Hit Ratio Within-group correlation

Coefficient 0 0.4 0.8 Coefficient 0 0.4 0.8

0.1 0.026 0.028 0.024 0.1 0.024 0.028 0.02

0.2 0.064 0.054 0.03 0.2 0.03 0.016 0.022

0.5 0.444 0.344 0.094 0.5 0.072 0.068 0.026

0.7 0.794 0.656 0.246 0.7 0.194 0.122 0.054

0.85 0.93 0.828 0.36 0.85 0.252 0.164 0.066

1.0 0.976 0.93 0.482 1.0 0.368 0.268 0.094

# of obs=1000, # of var=9, and R2=80% # of obs=1000, # of var=18, and R2=80%

R2 of the selected model is strictly greater: 97.2% R2 of the selected model is strictly greater: 97.4%

Hit Ratio Within-group correlation Hit Ratio Within-group correlation

Coefficient 0 0.4 0.8 Coefficient 0 0.4 0.8

0.1 0.242 0.218 0.048 0.1 0.064 0.074 0.03

0.5 0.998 0.998 0.996 0.2 0.304 0.356 0.116

1.0 0.998 0.998 0.998 0.5 0.95 0.996 0.734

0.7 0.996 0.996 0.986

0.85 0.996 0.996 0.996

1.0 0.996 0.996 0.996
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there is no direct answer to the question, and we need an indirect and sensible way to
assess the method’s reliability. In this simulation study, we rely on the knowledge that the
true model is always a feasible combination, and thus the estimated true model serves as a
natural benchmark to assess the quality of SCOFS. Due to sampling errors, the in-sample
R2 of the best combination must be greater than or equal to the benchmark value when the
number of explanatory variables is kept the same as that of the true model. If the number of
observations increases, it should become increasingly difficult for the best solution to yield
an R2 strictly higher than the benchmark value.

The simulation study reported in Table 1 always involves 900 potential explanatory vari-
ables, and we set out to select 9 or 18 variables, depending on which number were used
to generate the data. The 900 variables are equally divided into three groups of 300 each.
Within each group, the variables have the same correlation. The first group has zero corre-
lation, the second is 0.4, and third is 0.8. Across groups, variables are independent. All 900
variables are normally distributed with mean 0 and variance 1. Among the 300 variables
in each group, the regression coefficients are set to 0.1 for 100 variables, 0.5 for the second
batch of 100 variables, and finally 1 for the remainder. We consider two simulation setups
to ascertain the impact of residual errors in variable selection. We factor in the magnitude
of residual errors by considering two levels of theoretical R2 at 80% and 40%. In addition,
we examine the impact of the sample size and study the results under the sample size of 200
and 1,000, respectively. All studies are conducted with 500 repetitions to tally the various
rates of occurrence.

We will use the top-left panel in Table 1 to explain the simulation results. This simulation
study deploys 9 out of 900 variables to generate the data set as described above. The
theoretical R2 is at 80% and each sample has 200 observations. The results show that
SCOFS is able to beat the estimated true model 100% in the 500 simulation repetitions.
The results imply that SCOFS has mostly likely found the best in-sample solution. The hit
ratios (i.e, success in identifying the variables in the true model) reported in this panel for
nine sub-categories suggest that SCOFS yields a higher hit ratio for the lower correlation
group and the variables with a larger regression coefficient. Low hit ratios for the high
correlation group and the variables with a low regression coefficient are expected, because
those variables are not supposed to be easily discernable when the sample size is 200. Moving
on to other cases reported in different panels of Table 1 by varying the number of variables
to be selected, the level of R2, and sample size, a consistent pattern emerges to reflect the
fact that sampling errors provide room for SCOFS to outperform the estimated true model
in-sample.

Next we check how close R̄2(ps), the SCOFS-obtained maximum R2, is to the grand
maximum R2, the true maximum R2 proxied by the maximum R2 over 500 randomly-seeded
SMC optimization runs with 1,000 particles on the same data sample. The results are
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reported in Table 2. It is expected that they are no greater than the grand maximum R2.
As the reported values suggest, R̄2(ps) has hit the grand maximum R2 for smaller ps. For
larger ps, the room for improvement is practically negligible.

Table 2: Differences between R̄2(ps) (R2 of the SCOFS-selected model using 1,000 SMC
particles) and the grand maximum R2 (a proxy for the true maximum R2) under different
ps (the number of selected regressors) over 500 random SMC runs on a same data sample of
size 200. The data sample is simulated with a generating model that contains 12 variables
with a theoretical R2 of 80% to be selected from 900 potential variables. Four variables are
assigned to each of the three correlation groups (i.e., 0, 0.4 and 0.8) with their coefficients
equal to 0.1, 0.4, 0.7 and 1, respectively.

ps Mean Std Min 25% Median 75% Max

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 -0.000151 0.000342 -0.001257 0 0 0 0

8 0 0 0 0 0 0 0

9 -0.000013 0.000045 -0.000608 0 0 0 0

10 -0.00005 0.00014 -0.001077 0 0 0 0

11 -0.001405 0.000565 -0.003175 -0.001511 -0.001511 -0.001511 0

12 -0.002114 0.001058 -0.003952 -0.002523 -0.002523 -0.002211 0

13 -0.001389 0.000908 -0.003678 -0.001877 -0.001877 0 0

14 -0.001371 0.001186 -0.005212 -0.002681 -0.001214 -0.00042 0

15 -0.002992 0.001564 -0.006228 -0.004558 -0.003108 -0.001777 0

16 -0.002532 0.001528 -0.007693 -0.003561 -0.00286 -0.001064 0

17 -0.002216 0.001669 -0.00721 -0.002782 -0.001661 -0.001242 0

18 -0.002717 0.001916 -0.009594 -0.003697 -0.002063 -0.001488 0

19 -0.002908 0.002286 -0.010031 -0.003755 -0.002058 -0.001134 0

20 -0.002993 0.00236 -0.010473 -0.004609 -0.001974 -0.001677 0
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The comparison study between SCOFS and the Adaptive Lasso of Zou (2006) is based
on the true model having 12 variables among 900 potential variables. Each of 500 simulation
repetitions generates 200 observations with the 900 variables again equally divided into three
groups with different levels of within-group correlation of 0.1, 0.4 and 0.8. Each group is
assigned four variables with regression coefficients of 0.1, 0.4, 0.7 and 1, respectively. The
theoretical R2 is always fixed at 80%. Since the number of variables in the true model is
treated as unknown, five-fold cross-validation is used to determine the “right” number of
variables in the Adaptive Lasso, which matches the five-fold cross-validated SCOFS using
1,000 SMC particles. The results in Table 3 clearly indicate that the adaptive Lasso is prone
to choose too many variables with an average of 53 variables when the target number is 12
by design. Moreover, the range is quite wide with the solutions from 13 to 142. In contrast,
SCOFS yields an average of 11 variables and covers a much narrower range from 7 to 14.

Table 3: A comparison study of Stable Combinatorially-optimized Feature Selector (SCOFS)
using 1,000 SMC particles vs. adaptive Lasso in selecting out of 900 potential variables over
500 simulated samples. The 900 variables, which are normal random variables of mean 0
and variance 1, are divided into three independent groups of 300 each and at three levels of
within-group correlation – 0, 0.4, and 0.8. The true number of variables is set at 12 with
four assigned to each group, and their coefficients are 0.1, 0.4, 0.7 and 1. The number of
observations is fixed at 200 and the theoretical R2 of the simulated model is set to 80%.
Five-fold cross-validation is deployed to determine the number of selected variables for both
methods.

Performance SCOFS Adaptive Lasso

# of selected variables
(min, mean, max)

(7, 11, 14) (13, 53, 142)

F-Score 0.57 0.26

Precision 0.60 0.17

Recall 0.54 0.63

Three ratios reported in Table 3 need some explanations. First, the precision measures
the number of selected variables among the 12 true variables in relation to the total number
of variables being selected. A higher value implies a sort of higher accuracy. However, the
precision can be misleading when a method under-selects, and this can be easily understood
with an example. Suppose that a method only selects one variable which happens to be
among the 12 true variables. The precision will be 100%, but the method has missed all
11 other true variables. The recall computes the number of selected variables among the 12
true variables divided by 12, the number of variables in the true model in this simulation
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study. This measure can also be quite misleading if a method over-selects. In the extreme
case of selecting all variables, the recall will be by definition 100%.

The F-score strikes a balance of the two, and is the harmonic average of precision and

recall, i.e.,
(

precision−1+recall−1

2

)−1
. Due to excessive over-selection by the adaptive Lasso, the

recall is high and the precision is low, whereas SCOFS goes in an opposite direction. All in
all, the F-score of 0.57 for SCOFS implies its superior performance over the adaptive Lasso’s
0.26.

It is interesting to note that the popular Lasso penalty regression of Tibshirani (1996)
lacks the oracle properties as defined in Fan and Li (2001) because it generates downward
biased regression coefficients (in magnitude) by shrinking all coefficient estimates towards
zero. Even though the oracle property can be restored using adaptive Lasso of Zou (2006) or
SCAD penalty regression of Fan (1997) and Fan and Li (2001), they are based on asymptotic
arguments, which in essence rightly removes in the limit the penalty placed on regressors
with non-zero coefficients. Practical usage invariably deals with finite samples, and users
often adopt cross-validation as a penalty level selection criterion, which relies on the out-of-
sample prediction accuracy. Invariably, more regressors are chosen to counteract coefficient
shrinkage. This point has been made by, for example, Leng, et al (2006) and Wang, et al
(2007). Deploying SCOFS removes such a tension between the biased estimates and the
right set of regressors.

Our next simulation study is to determine how reliable the prediction based on the
extreme value theorem described in Section 3.3 in predicting the true maximum R2 and
generating a probability for further improvement upon the currently obtained R̄2(ps) on one
sample. For this simulation study, we use one fixed simulated sample of 200 data points
based on the 12-variable setup with 900 potential regressors. We conduct 500 times of
randomly-seeded SCOFS runs on the same data sample. Since the data set is fixed, the true
maximum R2 is fixed. However, the value predicted by the extreme value theory will vary
over the 500 runs. The fact that the true model is based 12 variables is assumed unknown to
the analyst. We shall therefore examine the performance under different numbers of selected
variables ranging from 1 to 20, and in each case, study how well the extreme value theory
performs.

Each SCOFS run deploys 5,000 SMC particles, which are always partitioned into 50
blocks of 100 points each. We compute 50 block maxima and use them to estimate the
Weibull distribution as described in Section 3.3. Since each randomly-seeded run produces
a SCOFS-obtained R̄2(ps), an extreme value theory predicted R2

max(ps) and an exceedance
probability, it gives rise to a sample of 500 points to study performance.
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Table 4: The extreme value theory predicted exceedance probability for R2 improvement
under different ps (the number of selected regressors) over 500 randomly-seeded SCOFS
runs on the same data sample of size 200. The data sample is simulated with a generating
model of 12 variables at a theoretical R2 of 80% to be selected from 900 potential variables.
Four variables are assigned to each of the three correlation groups (i.e., 0, 0.4 and 0.8) with
their coefficients equal to 0.1, 0.4, 0.7 and 1, respectively.

ps Mean Std Min 25% Median 75% Max

2 0.001677 0.004509 0 0 0 1.66E-07 0.045022

3 4.32E-07 0.000006 0 0 0 0 0.000092

4 1.35E-07 0.000003 0 0 0 0 0.000063

5 0.000216 0.00167 0 0 0 0 0.019677

6 0.034897 0.052047 0 3.45E-12 5.29E-09 0.066587 0.185934

7 0.013667 0.023401 0 0 1.39E-15 0.02013 0.147781

8 0.002216 0.006813 0 0 0 0.000986 0.080736

9 0.057673 0.044814 0 0.018746 0.05346 0.089384 0.213498

10 0.009727 0.014128 0 0 0.001944 0.015592 0.072866

11 0.001114 0.00302 0 0 0 0.000602 0.03231

12 0.00185 0.01069 0 0 0 0.000017 0.125854

13 0.012436 0.032315 0 0 2.69E-12 0.001292 0.188275

14 0.010989 0.028548 0 0 0 0.0027 0.220008

15 0.0076 0.019448 0 0 0 0.003098 0.150932

16 0.004698 0.014978 0 0 0 0.001444 0.166613

17 0.001916 0.008102 0 0 0 1.17E-12 0.087696

18 0.001266 0.006225 0 0 0 1.17E-08 0.073881

19 0.000234 0.001841 0 0 0 0 0.028998

20 0.000347 0.003467 0 0 0 0 0.072633

The median values reported in Table 4 indicate that exceedance probabilities are mi-
nuscule except when ps = 9. The exceedance probability of 5.346% may suggest a small
chance of improving the R2 by increasing the number of SMC particles, but the expected
improvement magnitude in R2 is actually quite small (around 0.1%) as revealed in the corre-
sponding median value in Table 5 where the estimated magnitudes of potential improvement
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under different cases are reported. All in all, the extreme value theorem provides a workable
way for one to assess the quality of the current SCOFS solution so as to decide whether to
commit more computing resources to improve upon the current solution. When one decides
to proceed, the k-fold duplication method described in Section 3.2 becomes handy.

Table 5: Differences between the extreme value theory predicted R2
max(ps) and SCOFS-

obtained R̄2(ps) under different ps (the number of selected regressors) over 500 random SMC
runs on the same data sample of size 200. The data sample is simulated with a generating
model that contains 12 variables with a theoretical R2 of 80% to be selected from 900
potential variables. Four variables are assigned to each of the three correlation groups (i.e.,
0, 0.4 and 0.8) with their coefficients equal to 0.1, 0.4, 0.7 and 1, respectively.

ps Mean Std Min 25% Median 75% Max

2 0.000903 0.002832 0 0 3.20E-11 0.000041 0.029309

3 0.000312 0.002508 0 7.75E-12 1.10E-11 2.03E-11 0.028416

4 0.000127 0.001728 0 1.00E-10 1.00E-10 1.00E-10 0.028081

5 0.000433 0.003189 0 9.00E-12 1.00E-10 1.00E-10 0.035484

6 0.002846 0.006841 8.40E-11 1.00E-10 1.00E-10 0.001054 0.038931

7 0.000196 0.000897 0 0 0 0.000128 0.015801

8 0.001425 0.005095 0 1.00E-12 1.00E-11 0.000038 0.035166

9 0.002451 0.004003 0 0.00026 0.001031 0.002961 0.0345

10 0.003453 0.005932 0 6.75E-12 0.001181 0.003906 0.039464

11 0.00323 0.006504 0 3.00E-12 1.00E-10 0.003532 0.039332

12 0.00298 0.007178 0 1.00E-12 1.05E-11 0.00118 0.041248

13 0.001207 0.004712 0 0 6.00E-12 0.00003 0.035751

14 0.000889 0.003329 0 0 0 0.000075 0.032541

15 0.001324 0.003917 0 0 4.00E-12 0.000788 0.042377

16 0.002024 0.005014 0 0 3.00E-12 0.001366 0.042143

17 0.00139 0.004119 0 0 3.00E-12 0.000023 0.028418

18 0.002011 0.00579 0 1.00E-12 5.00E-12 0.000174 0.044502

19 0.001922 0.00606 0 1.00E-12 5.50E-12 1.00E-10 0.044396

20 0.002076 0.006959 0 2.00E-12 6.00E-12 1.00E-10 0.043383
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